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Abstract—Episode Rule Mining is a popular framework for discovering sequential rules from event sequential data. However, traditional

episode rule miningmethods only tell that the consequent event is likely to happen within a given time interval after the occurrence of the

antecedent events. As a result, they cannot satisfy the requirement of many time sensitive applications, such as program security trading

and intelligent transportationmanagement due to the lack of fine-grained response time. In this study, we come up with the concept of

fixed-gap episode to address this problem. A fixed-gap episode consists of an ordered set of eventswhere the elapsed time between any

two consecutive events is a constant. Based on this concept, we formulate the problem of mining precise-positioning episode rules in

which the occurrence time of each event in the consequent is clearly specified. In addition, we develop a trie-based data structure tomine

such precise-positioning episode ruleswith several pruning strategies incorporated for improving the performance aswell as reducing

memory consumption. Experimental results on real datasets show the superiority of our proposed algorithms.

Index Terms—Episode rule mining, gap-constrained episode, sequence mining

Ç

1 INTRODUCTION

FREQUENT episode mining (FEM) has emerged as a popu-
lar research topic in the data mining community. Given

a single event sequence, FEM aims to identify all frequent
episodes with the frequency larger than a given threshold.
Here an episode (also known as serial episode [1]) is a totally
ordered set of events. FEM techniques have been widely
conducted into analysis of real-world data, such as alarm
sequences in telecom networks [1], time-stamped fault
reports in car manufacturing plants [2], web navigation
logs [1], [3], customer transactions [4], text [5], [6], stock
data [7], [8], [9], [10], and traffic data [10].

One basic problem in FEM is to find episode rules from
frequent episodes. Given a frequent episode a, a valid epi-
sode rule in the form of lhs! rhs can be generated in a
straightforward manner: The antecedent lhs is the prefix
of a and the consequent rhs is the suffix event in a, if its
confidence is larger than a user-specified threshold. In
many real applications, episode rules are further generated
from the discovered frequent episodes for decision making
and predicting [1], [7], [11], [12], [13].

Example 1. Fig. 1 gives a running example for episode rule
mining, where capital letters denote events and arabic
numbers denote timestamps. In this sequence, we see

three occurrences of episode hD;A;Bi when maximum
occurrence window size threshold is set to 4. Then, if we
take B as the consequent, an episode rule hD;Ai ! hBi
can be generated. This rule tells that it is within 2 time
intervals after the occurrence of hD;Ai that B will occur
(with 100 percent probability).

However, with such a rule discovered by traditional FEM
methods, we only know the approximate time range of the
occurrence of rhs.We argue that such rules are not practically
useful without specifying the exact time of rhs in real-world
applications. This precise-positioning episode rule mining
problem is particularly motivated by time-sensitive applica-
tions.Wewill describe two of such applications below.

The first is program security trading. Suppose the
sequence in Fig. 1 describes daily change events of a stock
market, and B refers to an event depicting the price of a
stock increases on a day. In the above example, we cannot
decide the exact time to buy this stock after the occurrence
of hD;Ai with only a time range of B will happen. If we buy
the stock at the first day and hold it for two days after hD;Ai
happens, we might lose money if the stock slumps signifi-
cantly on the first day and rebounds slightly (B occurs) on
the next day. Here although this rule makes a correct pre-
diction, we would still lose money. Similar scenario will
appear as well if we purchase the stock at the second day.
In this case, the episode rules discovered by traditional
methods would be inapplicable for this application.

Another motivating application is intelligent transporta-
tion management. Suppose the event sequence in Fig. 1
describes a traffic condition over time, and the meaning of
each event is that there is a traffic congestion at a certain
crossroad. Then the above rule indicates the crossroad B
will be congested after viewing traffic jams on the crossroad
D and A sequentially. However, without more fine-grained
information about the time interval of B, it is difficult to
adjust the traffic signal at B for relieving congestion. If we
adjust the traffic signal at B earlier than this time, some
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negative effects might appear in the surrounding area. If we
act later, a much more terrible jam at Bmight happen.

In the above two applications, traditional episode rules [1],
[7] fail to exert their effects. In this paper, we study the prob-
lem of Mining Precise-positioning Episode Rules (MIPER)
where we need to specify the exact time instead of the
approximate time range of the consequent events. To this
end, we first introduce the concept of fixed-gap episode, which
is defined as a tuple of events such that the time span
between any two consecutive events is specified. Formally,

the goal is to mine a precise-positioning episode rule lhs!Dt rhs
with the following three requirements: 1) the antecedent lhs
is a minimal-occurrence episode [14]; 2) the consequent rhs
is a fixed-gap episode; 3) the elapsed time between the last
event in lhs and the first event in rhs isDt.

We first discuss about the existence of fixed-gap epi-
sodes. As fixed-gap episodes require that the time span
between two consecutive events is determinated, the occur-
rence of an event ei will definitely induce the following
event eiþ1. We assume that the time span between ei and
eiþ1 follows a truncated Gaussian distribution such that

ðtiþ1 � tiÞ 8 Nðmi; s
2Þ and tiþ1 > ti: (1)

Such an assumption has been widely used to model similar
real-world distributions [15]. Then the fixed-gap episodes can
be generated from a stochastic process based on a chain reac-
tion such that the occurrence of ei results in the occurrence of
its successor eiþ1. Here the mode of this distribution, namely
mi > 0, is the most probable value for the time span between
ei and eiþ1. Thus, the fixed-gap episode ðhei; eiþ1i; hmiiÞ is
likely to appear frequently in the event sequence, and its fre-
quency would be higher than other analogous fixed-gap epi-
sodes with same events but different time spans, e.g.,
ðhei; eiþ1i; hmi � siÞ. It is clear that the fixed-gap episode
ðhei; eiþ1i; hmiiÞ is much more frequent than its variants for
smaller variance, i.e., s. As a result, it is likely that the precise-
positioning episode rule candidates are mainly generated
from such fixed-gap episode as the frequency of its variants
cannot exceed the threshold. Otherwise,wemaydiscover sev-
eral fixed-gap episodes about ei and eiþ1 with different time
spans but similar frequencies, and all of them might perform
the consequent of candidate precise-positioning episode rules
once they reach the frequency threshold.

While precise-positioning episode rules could provide
richer information, the performance of mining such rules
would suffer from “combination explosion”. Due to the con-
straints of exact time, the number of candidates for precise-
positioning episode rules would be much larger than that of
traditional episode rules. Although this problem can be
solved by extending traditionalwild-card basedmethods [16],
[17], [18], therewould be serious efficiency degradation due to
the exponential search space of entire possible patterns.

To address the issue of mining such rules, we first pro-
pose an enumeration based framework with the following
steps: 1) mining frequent minimal-occurrence episodes on
the whole sequence; 2) mining frequent fixed-gap episodes

on the whole sequence; 3) for each pair of a minimal-occur-
rence episode and a fix-gap episode, concatenating them to
generate a candidate of precise-positioning rule and then
computing its confidence.

According to the definition of precise-positioning epi-
sode rule, the consequent must occur after the antecedent.
Hence we can improve the proposed framework by mining
fixed-gap episodes only after the occurrences of frequent
minimal-occurrence episodes rather than over the whole
sequence. Following this route, we develop a compact trie-
based framework to mine precise-positioning episode
rules directly from frequent minimal-occurrence episodes
partitioning. In order to reduce the search space, we adopt
downward closure-based pruning strategy on the trie struc-
ture. Meanwhile, we also make full use of intermediate
results in trie nodes for subsequent traverses to avoid revis-
iting the original input sequence. To the best of our knowl-
edge, this is the first work to mine episode rules with exact
time information defined in their formulations.

The main contribution of this work is summarized as
follows.

� We address the new problem of mining precise-
positioning episode rules to satisfy the requirement
of time-sensitive applications in the real world.

� We design a trie-based framework to compactly
store valid precise-positioning episode rules and
perform efficient mining.

� We propose effective pruning strategies to further
reduce the processing time.

� We demonstrate the effectiveness of precise-
positioning episode rules on two practical applica-
tions and the efficiency of the proposed algorithms
based on real-world datasets.

The remainder of this paper is organized as follows. We
discuss related work in Section 2. Section 3 presents pre-
liminary definitions and problem statement. We design an
enumeration framework to solve the MIPER problem in
Section 4. In Section 5, we introduce a data structure PER-
trie to improve the overall efficiency. In Section 6, we fur-
ther propose detailed mining algorithms based on PER-trie
for MIPER. We discuss a real-world application of our
work in Section 7. We demonstrate the experimental stud-
ies and results in Section 8. We conclude the paper and
discuss future work in Section 9.

2 RELATED WORK

We are aware of several studies related to this work, includ-
ing gap constrained pattern mining, frequent episodes and
episode rules mining.

Gap Constrained Patterns. Gap constrained episode, also
known as unbounded episode [3], specifies the maximal
elapsed time between two neighbor events. Under the
framework of gap constrained episode, the gap is still a
range time interval instead of an exact value. Although we
could make a gap constrained episode to support fixed-gap
episode mining when the maximum gap constraint is set to 1,
such algorithms fail to find all fixed-gap episodes with differ-
ent time spans as our work did. The same problems also
appear in gap constrained sequential patterns [19]. Another
category of studies is mining sequential pattern with wild-
card constraint, which is usually applied to discover patterns
in string or biological sequences [16], [17], [18]. In this type of

Fig. 1. The running example of event sequence.
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pattern, the time interval between two continuous items in a
pattern is also considered. It usually indicates minimum and
maximum time intervals between two adjacent items. We
may extend such methods to our problem by setting multiple
gap-values to discover all fixed-gap patterns in the sequence.
But it is obvious that such an approach is time consuming due
to the exponential search space. Though [18] is able to dis-
cover rigid wild-card patterns with fixed gap constrains in
biological sequences, it can only generate long patterns by
convoluting known elementary patterns. Our algorithms,
however, can discover all fixed-gap episodes and valid pre-
cise-positioning episode ruleswithout any prior knowledge.

Frequent Episode Mining. Mining frequent episodes from
event sequence was first introduced by Mannila et al. [1]
where episodes are defined as directed acyclic graphs and
two kinds of counting support are considered, i.e., sliding
windows and minimal occurrence. After that, various fre-
quency measures are defined to discover different kinds of
episodes according to different applications, and minimal
occurrence is one of widely used measures [4], [7], [14], [20],
[21]. Mining general episodes can be intricate and computing-
intensive, for example, discovering whether a sequence cov-
ers a general episode isNP-hard [22]. Existing algorithms can
be categorized into two types, namely breadth-first enumera-
tion [1], [20], [23] and depth-first enumeration methods [4],
[7], [24]. Among them, the depth-first enumeration methods
can be used to discover episode minimal occurrence. How-
ever, most of these algorithms require a post-processing step
to verify detected occurrences [9], which still have a signifi-
cant space for improvement. On the other hand, researches
have been focused on mining subclasses of episodes, for
example, serial episodes [25], closed episodes [6], [22], maxi-
mal episodes [21], episodeswith unique labels [26], [27].

Episode Rule Mining. Inchoate episode rules are considered
a “second-stage” output derived from frequent episodes [1],
[7]. Episode rules are usually represented in the form of a
time range in which the consequent will happen. Meger
et al. [13], [28] constructed episode rules with gap constraint
episodes and proposed the algorithm to find the optimal win-
dow size. Fournier-Viger et al. [29] mined partially-ordered
sequential rules in which items are unordered in both the
antecedent and the consequent. Such kind of rules may
improve prediction accuracy in some applications. Lin
et al. [30] focused on the utility of episode rules and proposed
an algorithm to directly mine high utility episode rules. Our
work focuses on mining precise-positioning episode rules
motivated by critical applications in which we need to trigger
possible right responses at amore fine-grained right time.

3 PRELIMINARIES AND PROBLEM STATEMENT

In this section, we first give some preliminary definitions
in frequent episode mining (Definitions 1, 2, 3, 4, and 5) [1],
[7], [9], [20]. Then, we propose some new concepts about
precise-positioning episode rules (Definitions 6, 7, 8, 9, 10,
11, and 12), and finally formulate the mining problem.

3.1 Preliminaries

Definition 1 (Event Sequence). Let E be a finite set of events.
An event sequence, denoted ~S ¼ hðE1; t1Þ; ðE2; t2Þ; . . . ; ðEn; tnÞi,
is an ordered sequence of events, where each Ei 6¼ ; and Ei � E
consists of all events associated with timestamp ti, and tj < tk
for any 1 � j < k � n.

For example, Fig. 1 shows an event sequence
~S ¼ hðfDg; 1Þ; ðfA;Dg; 3Þ; ðfA;Bg; 4Þ; ðfEg; 5Þ; ðfB;D;Eg; 6Þ; ðfAg; 7Þ;
ðfBg; 8Þ; ðfE;Fg; 9Þ; ðfCg; 10Þ; ðfA;Fg; 11Þ; ðfFg; 12Þi.

Definition 2 (Episode). An episode a is defined as a non-
empty totally ordered set of events of the form hea1 ; . . . ;
eaj ; . . . ; eaki where eai 2 E for all i 2 ½1; k� and the event eai
occurs before the event eaj for any 1 � i < j � k. An episode a
of length k is referred to a k-episode.

Definition 3 (Episode Occurrence). Given an episode a ¼
hea1 ; . . . ; eaj ; . . . ; eaki and a sequence ~S; ½ta1 ; . . . ; tai ; . . . ; tak �
is an occurrence of a if and only if (1) eai is an element
of the event set Eai at time tai for all i 2 ½1; k�; (2) ta1 < ta2
< � � � < tak . The time window ½ta1 ; tak � is called an occur-
rence window of a. In this study, we only consider the episode
occurrences whose window size is smaller than a user-specified
threshold d, namely tak � ta1 < d. The set of all occurrences of
a in the sequence ~S is denoted by ocSetðaÞ.

For example, if d ¼ 6 in Fig. 1, ocSetðhD;A;BiÞ ¼ f½1; 3; 4�;
½3; 4; 6�; ½3; 4; 8�; ½3; 7; 8�; ½6; 7; 8�g.

Definition 4 (Minimal Episode Occurrence (MEO)).
Consider two time windows ½ti; tj� and ½t0i; t0j�. ½t0i; t0j� is sub-
sumed by ½ti; tj� if ti � t0i and t0j � tj. An occurrence window
½ti; tj� of an episode a is a minimal episode occurrence of a if
no other occurrence window ½t0i; t0j� of a is subsumed by ½ti; tj�.

For example, moSetðhD;A;BiÞ ¼ f½1; 4�; ½3; 6�; ½6; 8�g when
d ¼ 6 for the sequence in Fig. 1. The time window ½3; 8� con-
tains occurrences of hD;A;Bi, but it is not a minimal occur-
rence since hD;A;Bi also occurs in ½3; 6�.

Definition 5 (Support of Episode). The support of an epi-
sode a, denoted as spðaÞ, is defined as the number of its distinct
MEOs, i.e., spðaÞ ¼ jmoSetðaÞj. An episode is frequent if and
only if its support is not less than a user-specified parameter
min sup.

For example, the episode hD;A;Bi is frequent when
min sup ¼ 3 in Fig. 1.

3.2 Definitions and Problem Statement

Definition 6 (Fixed-Gap Episode). A fixed-gap episode
b is defined as a tuple in the form ðheb1 ; . . . ; ebi ; . . . ; ebki;
hDt1; . . . ;Dti; . . . ;Dtk�1iÞ where ebi 2 E for i 2 ½1; k� and the
event ebi occurs before the event ebj for any 1 � i < j � k.
Additionally, the time span of the occurring time between event
ebjþ1 and event ebj is Dtj; j 2 ½1; k� 1�.1 We denote a fixed-gap
episode with length k as fixed-gap k-episode.

For example, in Fig. 1, ðhE;Ai; h2iÞ is a fixed-gap
2-episode. The time span between E and A is 2.

Definition 7 (Fixed-Gap Episode Occurrence (FEO)).
Given a fixed-gap episode b ¼ ðheb1 ; . . . ; ebi ; . . . ; ebki; hDt1; . . . ;
Dti; . . . ;Dtk�1iÞ; ½tb1 ; . . . ; tbi ; . . . ; tbk � is an occurrence (FEO)
of b if and only if (1) ebi is an element of event set Ebi at time
tbi for all i 2 ½1; k�; (2) tbj < tbjþ1 and tbjþ1 � tbj ¼ Dtj for all
j 2 ½1; k� 1�. Similar to Definition 3, tb1 and tbk constitute an
occurrence window of b, which is denoted as ½tb1 ; tbk �.

1. A single event e is a kind of special fixed-gap episode, and we
denote it as ðhei; nullÞ.
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We can denote a FEO as ðb; ½tb1 ; tbk �Þ using its start time
and end time. The set of all occurrences of b is denoted by
ocSetðbÞ. For example, ocSetððhE;Ai; h2iÞÞ ¼ f½5; 7�; ½9; 11�g
in Fig. 1.

Definition 8 (Support of Fixed-Gap Episode). The sup-
port of a fixed-gap episode b, denoted as spðbÞ, is defined as the
number of its distinct occurrences, i.e., spðbÞ ¼ jocSetðbÞj.

Note that in Fig. 1 ðhD;A;Bi; h2; 1iÞ (occurring in ½1; 4�)
and ðhD;A;Bi; h1; 2iÞ (occurring in ½3; 6�) are two different
fixed-gap episodes. They are different in terms of the time
spans between adjacent events. However, ½1; 4� and ½3; 6� are
two different minimal occurrences of the same episode
hD;A;Bi under the traditional episode definitions.

Definition 9 (Precise-Positioning Episode Rule). A pre-
cise-positioning episode rule (PER) G is an implication

of the form a !Dt b, where a ¼ hea1 ; . . . ; eali is a frequent
minimal occurrence based episode, and b ¼ ðheb1 ; . . . ; ebki;
hDt1; . . . ;Dtk�1iÞ is a fixed-gap episode. Also, it must satisfy
the following two conditions: (1) the elapsed time between eal
and eb1 is a fixed value Dt; (2) For a given threshold
�;
Pk�1

i¼1 Dti þ Dt � �. Here, � is a user-specified threshold
named threshold of maximum window size for conse-
quent occurrence. The function of � is to decrease the compu-
tation burden in case that the distance between the consequent
and the antecedent of a same rule is too large.

For example, hD;Ai !2 ðhE;Fi; h3iÞ is a PER when � is set
to 5. It means that once hD;Ai happens, two time intervals
later Ewill happen, and then Fwill happen three more time
intervals later. Note that we do not limit the number of
events in the consequent as traditional episode rules do. But
the length of the consequent of a PER could be � at most.

Definition 10 (Occurrence of PER). Given a precise-
positioning episode rule G ¼ a!Dt b, a MEO of ða; ½ta1 ; tap �Þ,
and a FEO of ðb; ½tb1 ; tbq �Þ, we call ½ta1 ; tap ; tb1 ; tbq � the occur-
rence of G if and only if tb1 � tap ¼ Dt. This occurrence is
denoted as ðG; ½ta1 ; tap ; tb1 ; tbq �Þ, and ta1 and tbq are called start
time and end time, respectively. The set of all occurrences of
G is denoted as ocSetðGÞ.

Definition 11 (Support of PER). The support of precise-

positioning episode rule G ¼ a !Dt b, denoted as spðGÞ, is
defined as the number of its distinct occurrences, i.e., spðGÞ ¼
jocSetðGÞj.
For example, the support of hD;Ai !2 ðhE;Fi; h3iÞ is 2 in

the example in Fig. 1 when d ¼ 3 and � ¼ 5.

Definition 12 (Confidence of PER). Given a precise-
positioning episode rule G ¼ a!Dt b, the confidence of G is
defined as

confðGÞ ¼ spðGÞ
spðaÞ : (2)

A precise-positioning episode rule is called valid if and only if
its antecedent is frequent and its confidence is not less than a
user-specified minimum confidence thresholdmin conf .

For example, the PER hD;Ai !2 ðhE;Fi; h3iÞ is valid with
its confidence of 67 percent for the sequence in Fig. 1 when
d ¼ 3 and � ¼ 5.

Based on the above definitions, we formulate the prob-
lem of MIPER as follows:

Problem Statement of MIPER. Given an event sequence
~S (Definition 1), the problem of valid precise-positioning epi-
sode rule mining is to find all valid PER on ~S satisfying the
following four user-specified parameters: the minimum
support threshold min_sup (Definition 5), the minimum
confidence threshold min_conf (Definition 12), the thresh-
old of maximum window size for antecedent occurrence d
(Definition 3) and the threshold of maximum window size
for consequent occurrence � (Definition 9).

4 THE ENUMERATION APPROACH FOR MIPER

In this section, we introduce an enumeration approach,
denoted asMIP-ENUM, to solve theMIPER problem.We first
propose the enumeration framework and then design a
method to mine frequent fix-gap episodes. In order to show a
running example of our proposedmethods, we always set the
parameters as min sup ¼ 3, d ¼ 4, � ¼ 5 and min conf ¼ 0.6
from Sections 4, 5, and 6 unless otherwise specified.

4.1 Framework of MIP-ENUM

The basic idea of MIP-ENUM is to enumerate PER candi-
dates by concatenating discovered MEOs with FEOs
and subsequently filter the infrequent ones according
to their confidence values. The pseudo-code of MIP-ENUM
is shown as Algorithm 1.

Algorithm 1.MIP-ENUM

Input: ~S: the event sequence
min sup: threshold of minimum support
d: threshold of maximum window size for antecedent
occurrence
min conf : threshold of minimum confidence
�: threshold of maximum window size for consequent
occurrence
Output: the set of valid PER
1 begin
2 mining frequent minimal-occurrence episodes from ~S

with frequency threshold of min sup and occurrence
window size threshold of d

3 mining frequent fixed-gap episodes from ~S with
frequency threshold of min sup 	 min conf and
occurrence window size threshold of �

4 ]1�i�nAi discovered MEOs by their end time
5 ]1�j�nCj discovered FEOs by their start time
6 foreach Ai do
7 for all ða; ½ta1 ; ti�Þ 2 A

i do
8 for Dt ¼ 1 to � do
9 for ðb; ½tiþDt; tbq �Þ 2 CiþDt do
10 generate a PER occurrence by

ða!Dt b; ½ta1 ; ti; tiþDt; tbq �Þ
11 filter PER candidates whose confidence is less than

min conf and return
12 end

In order to perform candidate generation, we first mine
both frequent episodes and fixed-gap episodes from the
input sequence by setting different frequency and occur-
rence window size thresholds (Lines 2 and 3). Next, we
group the MEOs and FEOs by their end time and start time,
respectively. In particular, denoted by Ai as the set of MEOs
whose end time is ti and Cj as the set of FEOs whose
start time is tj (Line 4 and 5), where i; j 2 ½1; n� and n is
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the length of the sequence. The enumeration process is then

performed, and a PER occurrence, ða!Dt b; ½ta1 ; ti; tiþDt; tbq �Þ,
can be formed by concatenating a MEO ða; ½ta1 ; ti�Þ from A

i

and a FEO ðb; ½tiþDt; tbq �Þ from CiþDt (Lines 6-10). Finally,
the filtering step is carried out to output all valid PERs.

For example, ðhD;Ai, [3, 4]Þ is an element of A4 and
ððhE;Fi; h3iÞ; ½6; 9�Þ is an element of C6 from our running
example sequence. When Dt ¼ 2, we can generate a PER
candidate G ¼ hD;Ai !2 ðhE;Fi; h3iÞ with an occurrence of
G; ½3; 4; 6; 9�. hD;Ai !2 ðhE;Fi; h3iÞ is a valid PER in the run-
ning example with a confidence of 0.67.

4.2 Mining Frequent Fixed-Gap Episodes
In MIP-ENUM, mining frequent fix-gap episodes (Line 3 of
Algorithm 1) is an essential phase. This phase can be accom-
plished by taking conventional FEM algorithms followed by
filtering steps. However, it is inefficient because multiple
infrequent fixed-gap episodes may aggregate as a frequent
episode which may derive unnecessary computations when
performing postprocessings. Hence, we propose an algo-
rithm to efficiently produce frequent fixed-gap episodes.

The algorithm adopts a level-wise mining process [31]
which always mines fixed-gap kþ 1-episodes based on the
frequent fixed-gap k-episode. We show its pseudo-code in
Algorithm 2. First, the events whose frequency exceed the
minimum threshold are added into a set Lk for further itera-
tions. They are also kept to the output set G since they are
parts of frequent fixed-gap episodes (Lines 3-5). Next, we
begin the level-wisemining process. Inmore detail, for every
frequent fixed-gap k-episode b in Lk, every occurrence of b is
considered independently. For each FEO ðb; ½tb1 ; tbk �Þ in
ocSetðbÞ, we scan every event set Ei on ~S where i 2 ½tbk þ 1;
tb1 þ �� tbk � and generate new fixed-gap kþ 1-episode
occurrences (Lines 8-11). After that, we filter the infrequent
fixed-gap kþ 1-episode and keep the frequent ones for the
next iteration.

Algorithm 2.Mining Frequent Fixed-Gap Episodes

Input: ~S: the event sequence
min freq: threshold of minimum frequency
�: threshold of maximum occurrence window size
Output: G: the set of frequent fixed-gap episodes
1 begin
2 initialize Lk;G  ;
3 foreach event e 2 ~S such spðeÞ 
min freq do
4 Lk Lk [ e
5 G  G [ Lk

6 while Lk ! ¼ ; do
7 initialize Lkþ1 ;
8 foreach frequent fixed-gap k-episode b in Lk do
9 foreach ðb; ½tb1 ; tbk �Þ 2 ocSetðbÞ do
10 for i ¼ tbk þ 1 to tb1 þ �� tbk do
11 scan event set Ei on ~S to generate new fixed-gap

kþ 1-episodes occurrences
12 Lkþ1 frequent fixed-gap kþ 1-episodes
13 G  G [ Lkþ1
14 Lk Lkþ1
15 return G
16 end

Take b ¼ ðhB;Ei; h1iÞ as an example. We have ocSetðbÞ ¼
f½4; 5�; ½8; 9�g. For the FEO ððhB;Ei; h1iÞ; ½4; 5�Þ, we scan
the event sets E6-E9. Then the event sets E10; E11 and E12

are checked when we consider the FEO ððhB;Ei; h1iÞ; ½8; 9�Þ.
Finally we can get a new frequent fixed-gap 3-episode
ðhB;E;Ai; h1; 2iÞwhose support is two.2

Complexity. For the input sequence with length n, if
the maximum size of an event set on the input sequence ism,
MIP-ENUM will output Oðnmðmþ 1Þ��1Þ candidate fixed-
gap episodes. Moreover, there are OðnmdÞ possible frequent
minimal-occurrence episodes in the input sequence, MIP-

ENUM thus may generate Oð�n2mdþ1ðmþ 1Þ��1Þ PER candi-

dates. The number is rather large inmost cases.
From the above analysis, we can see that the MIP-ENUM

method may generate immoderate amounts of fixed-gap
episodes as well as more PER candidates and is thus gener-
ally inefficient. The reason is because that MIP-ENUM
mines frequent fixed-gap episodes over the whole input
sequence, and generates PER candidates through a qua-
dratic enumeration. Therefore, we need to find a more effi-
cient way to solve this problem.

5 PRECISE-POSITIONING EPISODE RULE TRIE

In this section, we introduce a trie-based framework, named
PER-trie, to store precise-positioning episode rules com-
pactly. Such data structure is also helpful for facilitating
the efficiency of discovering valid PERs. We can also take
advantage of its features to improve the mining process.
Detailed algorithms will be presented in Section 6.

5.1 Structure of PER-trie
Given a frequent minimal-occurrence episode a, a PER-trie,
denoted as T a is a trie-like data structure which stores valid
precise-positioning episode rules whose antecedent is a.

The root node r of a PER-trie T a, denoted by
ðr:episode:r:tlistÞ, consists of two fields: the episode field
r:episode and the end time set field r:tlist. Here r:episode
registers the minimal-occurrence episode a; and r:tlist
records all the end times of minimal occurrence of a, i.e.,
r:tlist ¼ ftjj½ti; tj� 2 moSetðaÞg.

Example 2. Fig. 2 shows a PER-trie of T hD;Ai in which the
root node r is ðhD;Ai:f3; 4; 7gÞ since we have moSetðhD;
AiÞ ¼ f½1; 3�; ½3; 4�; ½6; 7�g.

The non-root node q, denoted by ðq:event:q:tlistÞ, consists
of two fields: the event field q:event and the occurrence time
set field q:tlist. Here q:event registers which event this node
represents, and q:tlist is a set containing the occurrence
time of such event after a fixed distance to the elements of
p:tlist, where p is the parent node of q.

Fig. 2. Complete PER-trie of T hD;Ai.

2. Since we set min sup ¼ 3 and min conf ¼ 0.6 for running exam-
ples, the lower bound of frequency of frequent fixed-gap is thus
derived to 2 ¼ d3 	 0:6e.
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The edge between a parent node p and its child node q
has a distance field, which is a positive integer to record the
length between the two nodes. We denote it as dðp; qÞ. In the
PER-trie, for any element t0 2 q:tlist, there exists an element
t 2 p:tlist such that t0 � t ¼ dðp; qÞ.

Example 3. The node p in Fig. 2 shows a non-root node
of ðB:f4; 8gÞ. The distance between it and the parent root
node r is 1. Since r:tlist ¼ f3; 4; 7g; p:tlist records the
occurrence time of B on the 1-interval-later time stamps
of r:tlist, namely f4; 5; 8g. Thus p:tilst ¼ f4; 8g. For anot-
her node q ¼ ðE:f5; 9gÞ, we have dðp; qÞ ¼ 1, thus q:tlist
records the occurrence time of event E 1-interval-later
time stamps 4 and 8 which is f5; 9g.

Then given a PER-trie T a, a PER can be represented by a
path from the root node to any non-root node. Specifically,
we assume that the path from the root r to a non-root node
q is through the nodes q1 ) q2; . . . ;) qk. Then, the node q

refers to a PER a !dðr;q1Þ ðhq1:event; . . . ; qk:event; q:eventi; hdðq1;
q2Þ; dðq1; q2Þ; . . . ; dðqk; qÞiÞ.

Example 4. The path from the root node r to the node q in
Fig. 2 denotes a PER hD;Ai !1 ðhB;Ei; h1; 1iÞ. Similarly,
the node q0 refers to another PER hD;Ai !1 ðhE;Ai; h2; 2iÞ.

5.2 Features of PER-trie
Here we introduce two essential features of PER-trie. Such
features will be helpful to further improve the performance
of the mining process.

Lemma 1 (Support Counting). Given a non-root node q0 on a
PER-trie T a, the support of the PER associated with q0 is equal to
the cardinality of the occurrence time set field of q0, i.e., jq0:tlistj.

Proof. Without loss of generality, We denote the root node
of T a by r, and denote the rule associated to an arbitrary
non-root node q0 by G.

Consider any pair of parent-child node in the trie, e.g.,
p (parent) and q (child), for any element tj 2 q:tlist, we
can always find a ti 2 p:tlist satisfying ti þ dðp; qÞ ¼ tj. In
other words, we have p:event and q:event occurring on ti
and tj respectively and tj � ti ¼ dðp; qÞ for any pair of
parent-child node p and q on the trie. Hence, for every
element tj 2 q0:tlist, we can always derive to a unique
occurrence of G by backtracking the PER-trie. Thus we
have spðGÞ 
 jq0:tlistj.

On the other hand, spðGÞ � jq0:tlistj is straightforward.
Suppose there exists another occurrence of G whose end
time is not contained in q0:tlist. Then we could find the
end time of such occurrence of a (G’s antecedent) not in
r:tlist. However, r:tlist registers all the end times in
moSetðaÞ by its definition. It contradicts with our
assumption. Hence, all the end times of G’s occurrences
must appear in q0:tlist, and we have spðGÞ � jq0:tlistj.

Hence, spðGÞ ¼ jq0:tlistj. The original proposition is
thus proved. tu

Lemma 2 (Downward Closure). Given a pair of parent-child
node p (parent) and q (child) in a PER-trie, the support of the
rule associated with p is not less than that of q.

Proof. It is straightforward to get q:tlist � ftkjtk ¼ ti þ
dðp; qÞg where ti 2 p:tlist. Hence, we have jq:tlistj �
jp:tlistj. According to the Lemma 1, jq:tlistj and jp:tlistj

are equal to the support of PERs associated with q and p,
respectively. The original proposition is thus proved. tu

Example 5. The support of the PER G ¼ hD;Ai !2 ðhEi; h2iÞ
associated to the node p0 ¼ ðE:f5; 6; 9gÞ in Fig. 2 is 3.
While for its child, q0 ¼ ðA:f7; 11gÞ, its corresponding PER
G0 ¼ hD;Ai !2 ðhE;Ai; h2; 2iÞ has a support of 2. Here
spðG0Þ � spðGÞ.
Lemma 2 ensures the support of a PER associated with a

node p in a PER-trie cannot be less than the support of all its
descendant nodes. Hence we can design pruning techniques
based on such lemma in the mining process.

6 DIRECTLY MINING VALID PER

In this section, we design a more efficient approach MIP-
TRIE with the help of the proposed PER-trie structure in the
above section. Unlike MIP-ENUM, MIP-TRIE can directly
discover valid precise-positioning episode rules from the
event sequence without generating PER candidates. We
first propose the overall framework of MIP-TRIE and then
introduce two optimized algorithms MIP-TRIE(DFS) and
MIP-TRIE(PRU).

6.1 Overview of MIP-TRIE
The key ingredients to the efficiency of MIP-TRIE
are (i) frequent minimal-occurrence episodes partitioning
strategy, (ii) the usage of PER-trie to store valid PERs
and (iii) novel algorithms for mining valid PERs without
generating candidates.

The MIP-TRIE algorithm is divided into two phases. The
first phase is to mine frequent minimal-occurrence episodes
as possible antecedents of PER. The second phase, subse-
quently, is to mine valid PERs based on each possible
antecedent. We give the pseudo-code of the framework of
MIP-TIRE in Algorithm 3.

Algorithm 3.MIP-TRIE Framework

Input: ~S: the event sequence
min sup: threshold of minimum support
d: threshold for the antecedent occurrence window size
min conf : threshold of minimum confidence
�: threshold for the consequent occurrence window size
Output:R: the set of valid PER

1 begin
2 initializeR ;
3 A mining frequent minimal-occurrence episodes from ~S

with the thresholds ofmin sup and d

4 foreach a 2 A do
5 ETa the set of end time of each MEO of a
6 R R [MIP-TRIEða; ET a; �; spðaÞ 	min confÞ
7 returnR
10 end

It first mines frequent minimal-occurrence episodes over
thewhole input sequence (Line 3).Next, an internal procedure
MIP-TRIE is invoked for every frequent minimal-occurrence
episode a. And its output is a complete PER-trie which stores
all valid PERs in the input sequencewhose antecedent is a.

The MIP-TRIE procedure takes the following four
parameters as input: The first parameter is the antecedent of
possible rules, e.g., a. The second one refers to the end time
set of the antecedent’s MEOs. The third, �, is the maximum

AO ETAL.: MINING PRECISE-POSITIONING EPISODE RULES FROM EVENT SEQUENCES 535



window size for the consequent occurrences. And the last
one refers to the minimum frequency threshold that makes
a candidate PER valid. For example, if a is considered as the
antecedent, then this threshold should be set to spðaÞ 	
min conf (Line 6 in Algorithm 3).

MIP-TRIE can take advantage of the minimal-occurrence
episode based partitioning. Compared with MIP-ENUM,
MIP-TRIE only needs to discover corresponding fixed-gap
episodes on subsequences after antecedents rather than
the whole input sequence, which alleviates the number of
useless fixed-gap episodes. Additionally, MIP-TRIE updates
the minimum frequency threshold for fixed-gap episodes
after dealing with each episode a. In this way, we can also
reduce the processing time since more lenient parameter
settings will lead to longer execution times.

6.2 Depth-First Construction of PER-trie
The internal procedure MIP-TRIE in Algorithm 3 returns a
PER-trie storing all valid PERs of a given antecedent. The
algorithm in fact transfers the valid PER mining process to a
complete PER-trie construction for each frequent minimal-
occurrence episode. In this section, we give a DFS-based
approach to construct a complete PER-trie. We denote such
algorithm as MIP-TRIE(DFS). This algorithm performs
a depth-first enumeration over the trie structure. The main
idea is to recursively expand a frequent sequence s (of length
l) to generate all frequent sequences of length lþ 1 with s as
the prefix [32]. Here in our MIP-TRIE(DFS), we start from
the root node of a PER-trie, and recursively expand nodes
on the PER-trie until no more nodes can be expanded.

We give its pseudo-code in Algorithm 4. It first creates
a root node r with a given antecedent a (Line 2). Then,
an internal function ExtendNode is invoked starting from r
to perform node expansions (Line 3). For a node q to be
extended, it first calculates the distance dðq; rÞ. Then upper
bound of the number of enumerations is correspondingly
�� dðq; rÞ, and the distance of the root node to itself is
0 (Lines 2 and 3). Next, it conducts on multiple rounds of
enumerations over the original event sequence. First, an off-
set value is appended to every element in q:tlist to get a set
of variables position List (Line 4). All event sets occurring
at time position List are then collected. Among these event
sets, it searches events with frequency higher than min freq
and store them to a set E0 (Line 5). For any event e0 2 E0, it
extends a new node q0 as the child of q, which represents a
new discovered valid PER. Once q0 is generated, the same
function is immediately invoked recursively in which q0 is
taken as the node for the next extension (Lines 6-11). When
such an event set E0 cannot be found any longer, the con-
struction process will stop.

Algorithm 4.MIP-TRIE(DFS)

Input: a: a frequent minimal-occurrence episode
ETa: the set of end time of each MEO of a
�: the threshold of maximum window size for consequent
occurrence
min freq: minimum frequency threshold generating a valid PER

Output: T a: the complete PER-trie w.r.t. antecedent a
1 begin
2 build a root node r of T a where r:episode a and r:tlist ETa

3 ExtendNodeðr; �;min freqÞ
4 end

Function ExtendNode(q; �;min freq)

Input: q: node to be extended
�: the threshold of maximum window size for consequent
occurrence
min freq: minimum frequency threshold generating a valid PER

Output: T a: updated PER-trie w.r.t antecedent a
1 begin
2 d distance between the root r and the node q
3 for i ¼ 1 to ð�� dÞ do
4 position List ft0jt0 ¼ tþ i; t 2 q:tlistg
5 scan ~S on each time stamp in position List and get an

event set E0 such that the frequency of every event in
E0 is not less thanmin freq

6 foreach e0 2 E0 do
7 q0:event e0

8 Q the set of occurrence times of e0 in position List
9 q0:tlist Q
10 put q0 as the child of q
11 ExtendNodeðq0; �;min freqÞ
12 end

Example 6. Consider p ¼ ðB:{4, 8}Þ in Fig. 2, the distance
between the node p and the node r ¼ ðhD;Ai:{3, 4, 7}Þ is 1,
the upper bound for enumerations of p is thus 4. Next,
we begin four rounds of enumerations. When i ¼ 1, event
sets E5 and E9 are collected, and we can expand a child
node q ¼ ðE:{5, 9}Þ of p. Then the node q is immediately
extended, and we can similarly derive to a child node
ðA:{7, 11}Þ whose distance to q is 2. Finally, the complete
PER-trie of T hD;Ai is shown as Fig. 2.

6.3 Improved Construction of PER-trie
Although MIP-TRIE(DFS) can significantly outperform MIP-
ENUM by avoiding the generation of candidates, there is still
much room for improvement.While performing node expan-
sions, MIP-TRIE(DFS) may scan repetitive positions over the
input sequence to collect event sets as well as their frequen-
cies. For example, as shown in Fig. 2 event set E7 = fAg; E8 ¼
fBg and E11 ¼ fA;Fg will be re-collected when expanding
the root node r by distance 4 and the node p0 by distance 2.
Meanwhile, E7 and E11 will be re-collected when expanding
the node p by distance 3 and the node q by distance 1. Among
them only the event A exceeds the minimum frequency
threshold. However, we can only filter event B and F after
we redundantly count their frequencies inMIP-TRIE(DFS).

In order to eliminate duplicate event sets and sequence
scans, we propose an improved approach, denoted as MIP-
TRIE(PRU). The basic idea is to adjust the order of node
extensions and reuse intermediate results of the established
PER-trie as much as possible during the traversing process.

MIP-TRIE(PRU) adopts an improved strategy for building
complete PER-trie, and we give the pseudo-code of such
method in Algorithm 6. Specifically, it first expands the root
node r via the sameway as that inAlgorithm 4 (Lines 2-9) and
performs � iterations in the outer loop. But unlike the DFS
based method, when reaching a new child node (denoted by
q0) of r, a top-down inner traverse procedure is triggered. That
is, for every non-root node w on the established PER-trie
except that q0, it computes a variable set to record the time
stamps that are needed to be checked (Line 13). Then if the
cardinality of the intersection of such a variable set and q0:tlist
exceeds the minimum frequency threshold, a new child node
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will be directly generated to the node w, and a new valid
PER can be derived (Lines 14-17). Otherwise, all descendants
ofw can be safely pruned according to the Lemma 2 (Line 19).
Eventually, it will return a complete PER-trie after the outer
loop is finished.

Algorithm 6.MIP-TRIE(PRU)

Input: a: a frequent minimal-occurrence episode
ETa: the set of end time of each MEO of a
�: the threshold of maximum window size for consequent
occurrence
min freq: minimum frequency threshold generating a valid PER

Output: T a: the complete PER-trie w.r.t antecedent a
1 begin
2 build a root node r of T a where r:episode a and

r:tlist ETa

3 for i ¼ 1 to � do
4 position List ft0jt0 ¼ tþ i; t 2 r:tlistg
5 scan ~S on each time stamp in position List and get an

event set E0 such that the frequency of every event in
E0 is not less than min freq

6 foreach e0 2 E0 do
7 q0:event e0

8 q0:tlist occurrence time of e0 in position List
9 put q0 as the child of r
10 foreach non-root node w of T a except q0 do
11 d distance between r and w
12 if i > d then
13 tmp List ¼ ft0jtþ i� d; t 2 w:tlistg
14 S tmp List \ q0:tlist
15 if jSj 
 min freq then
16 w0:event q0:event; w0:tlist S
17 put w0 as the child of w
18 else
19 /* Pruning with Lemma 2*/
20 end

Example 7. The mining process of Algorithm 6 when i ¼ 4
is given as Fig. 3. We first collect the event sets E7; E8 and
E11 and expand a child node, namely q0, of the root node
r. The node q0 is shade by dots as shown in Fig. 3b. Next,
we separately traverse the non-root nodes w1; w2 and w3

in Fig. 3a and compute the set S in the Line 14 of Algo-
rithm 6. In more detail, for the node w1, we first get
tmp List ¼ f7; 11g and derive to S ¼ f7; 11g. Hence, we
generate a new node w01 as a child node of w1 and discover
a valid PER hD;Ai !1 ðhB;Ai; h3iÞwith a confidence of 0.67.
The nodes w02 and w03 can be generated in the similar way.
Themining results for such iteration is shown as Fig. 3b. In
this process, event sets E7; E8 and E11 are collected only
once to count events frequencies inMIP-TRIE(PRU), while
inMIP-TRIE(DFS) they are collected four times.

Example 8. The result for performing Algorithm 6 when
i ¼ 5 is given as Fig. 4. The node q0 ¼ ðF:f9; 12gÞ (shaded by
dots) is first constructed, and then we access the node w1 ¼
ðB:f4; 8gÞ. For w1, we compute the set S (refer to Line 14 in
Algorithm 6) and get S ¼ f12g. Since its cardinality is lower
than min freq, we do not add new child node for w1. Fur-
thermore, we can prune all descendants ofw1 from the sub-
sequential traverses, namely nodew4; w5 andw7, according
to Lemma 2. Finally, after we visit w2; w3 and w6, the only
newgenerated node, i.e.,w02, is shaded by lines in the figure.

In the previous example, 42.86 percent nodes are pruned
during the procedure of traversing on the PER-trie. More-
over, event set E8; E9 and E12 are collected only once in
MIP-TRIE(PRU) while they are visited eight times in MIP-
TRIE(DFS). Therefore, we can see that MIP-TRIE(PRU) is
more efficient as it avoids duplicated scans on the original
sequence and meanwhile adopts pruning strategies based
on downward closure property.

6.4 Soundness and Completeness
In this section, we prove the soundness and completeness
of the proposed MIP-TRIE algorithm. First of all, we show
the proposed two algorithms are equivalent in Lemma 3.

Lemma 3. The MIP-TRIE(DFS) algorithm and MIP-TRIE
(PRU) algorithm are equivalent.

Proof. To prove this lemma, we need to prove that given a
non-root node w0 on a PER-trie, the set S in the Line 14
of Algorithm 6 is equivalent to the set Q in the Line 8 of
functionExtendNode.

Without loss of generality, we suppose w0 ¼ ðe0:w0:tlistÞ
and its distance to the root node r ¼ ða:r:tlistÞ is d1. And
the parent node of w0 with dðw;w0Þ ¼ d2 is denoted by w.
According to Algorithm 6, we have a child node, q0 ¼
ðe0:q0:tlistÞ, of the root node r whose distance to r is d1 as
well.

First, we prove Q � S. According to the definition of
Q, it records the occurrence time stamps of e0 that appear
d2 time intervals after the elements in w:tlist. We then
have Q � tmp List (refer to Line 13 of Algorithm 6) since
it stores all time stamps d2 time intervals after the ele-
ments in w:tlist. On the other hand, remember that
the distance between w0 and r is d1, we have Q �
q0:tlist (refer to Line 8 of Algorithm 6) because q0:tlist
stores all occurrence times of e0 whose distance to r is d1.
As a consequence, we have Q � S ¼ tmp List \ q0:tlist.

Next, we use apagoge to prove S � Q. Suppose there is
an element, denoted as tj, in S which is not belong to Q.
Then we have tj 2 ft0jt0 ¼ tþ d1; t 2 r:tlistg, and there is
an occurrence of e0 on such a tj. Remember Q stores the
occurrence times of e0 in ft0jt0 ¼ tþ ðd1 � d2Þ þ d2; t 2
r:tlistg. Hence, tj must belong inQwhich contradicts with
our assumption. Thus S �Q. Finallywe haveS ¼Q. tu
Lemma 3 guarantees MIP-TRIE(DFS) and MIP-TRIE

(PRU) have the same results. Now we prove the soundness
and the completeness of the proposed MIP-TRIE algorithm.

Theorem 1 (Soundness). Every non-root node in PER-trie
generated by MIP-TRIE algorithm is associated with a valid
precise-positioning episode rule.

Proof. Since MIP-TRIE invokes the MIP-TRIE function by
delivering spðaÞ 	min conf as the minimum frequency

Fig. 3. The result for running Algorithm6 to the PER-trie T hD;Ai when i¼ 4.
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threshold for a, each non-root node q in the PER-trie
holds jq:tlistj 
 spðaÞ 	min conf . With Lemma 1, the
support of the PER associated with q is jq:tlistj, hence
such PER must be valid because its confidence is not less
than min conf where min conf is the user-specified mini-
mum confidence threshold of our problem. The sound-
ness of the algorithm is thus proved. tu

Theorem 2. (Completeness). Given a frequent minimal-
occurrence episode a, the complete PER-trie generated by the
MIP-TRIE records all valid precise-positioning episode rules
whose antecedent is a.

Proof. Since MIP-TRIE enumerates every possible gap
between the antecedent and the consequent, i.e., Dt, from
1 to � by fixed step as 1, it will not leave out any PER
candidate based on the definition of PER. Then according
to Theorem 1, every node on PER-trie represents a valid
PER, the complete PER-trie in which the episode field of
the root node is a thus contains all valid precise-position-
ing episode rules whose antecedent is a. The completeness
of the algorithm is thus proved. tu

6.5 Complexity Analysis of Building PER-trie
In this section, we analyze both space and time complexity
of building a PER-trie. For simplicity, we only discuss the
worst case here.

The space complexity of building a PER-trie is decided
by the number of nodes of a complete PER-trie. As a result,
the DFS and improved methods have the same space com-
plexity. We incorporate them together for discussion. The
worst case is that on each timestamp the event sequence has
all distinct jEj events.

We start from the simplest case. Given a PER-trie T a,
we denote its root node as r. Then considering a child node
of r, denote as q, whose distance to r is �, i.e., dðr; qÞ ¼ �.
Since the node q reaches the maximumwindow size for con-
sequent occurrence, it has no more descendant node. Hence
the subtree with q as the root node has only one node. There
are all together jEj nodes, in the worst case, as q which
are child nodes of r and their distance to r is �. We denote
these nodes by Nodeð�Þ ¼ fq j q is the child node of r and
dðr; qÞ ¼ �g, and we have jNodeð�Þj ¼ jEj.

Then, for other NodeðiÞ where 1 � i � �� 1, we have

jNodeðiÞj ¼ jEjð1þ
P�

j¼iþ1 jNodeðjÞjÞ. After the reduction,

we get jNodeði0Þj ¼ jEjðjEj þ 1Þ��i
0
for every i0 2 ½1; ��. Finally

the number of nodes on a complete PER-trie will be
1þ

P�
i¼1 jNodeðiÞj ¼ ðjEj þ 1Þ�, and the space complexity

is OðjEj�Þ in the worst case.
Next we discuss the time complexity. When we build a

PER-trie through DFS, we need to scan every event set for
each node. Hence its time complexity will be OððjEj þ 1Þ� �

jEj � jr:tlistjÞ where r:tlist is the end time set field of the
root node r in such PER-trie. That means we need to check
jr:tlistj positions on the sequence, and every event set con-
tains jEj events in the worst case. Its simplified form leads
to OðjEj�þ1 � jr:tlistjÞ.

While for the improved method described in Section 6.3,
we only need to scan the original sequence for the children
of root node, and perform list merging for other nodes.
Specifically, the size of every list will be equal to jr:tlistj in
the worst case, and we can perform the merging operations
of two lists in a linear time. Consequently, the time com-
plexity of the improved method for build a PER-trie will
be Oð� � jEj � jr:tlistj þ ðjEj þ 1Þ� � jr:tlistjÞ, and its simplified
form derives to OðjEj� � jr:tlistjÞ.

From the formula of complexity, we can observe both
MIP-TRIE(DFS) and MIP-TRIE(PRU) algorithm have the
same space complexity while MIP-TRIE (PRU) can save
around jEj times in time for PER-trie construction. On the
other hand, the following parameters are more sensitive for
the proposed algorithms, namely �;min sup and min conf .
� is intuitive while min sup and min conf jointly determine
the real event numbers we need to consider during the pro-
cess of mining PERs.

7 APPLICATIONS

In this section, we provide an application scenario of our
proposed techniques on a real-world dataset of Beijing traf-
fic condition to demonstrate the existence and the signifi-
cance of the fixed-gap episodes.

The data we used here is a log sequence of road condition
in urban streets of Beijing. The events are collected every
fifteen minutes in morning and evening rush hours (7:00 a.m.
to 9:00 a.m. and 17:00 p.m. to 19:00 p.m.) ranging from Jan. 4 to
Oct. 11, 2005. The content is the traffic status of certain main
streets and crossroads. We selected 3 urban areas in Beijing
which usually suffer from traffic jams to conduct on the inves-
tigation, denoted as Cases 1–3 in Fig. 5. In this figure, the
driving directions are labeledwith a line from spot “1” to “2”,
and the included cross-roads aremarkedby ellipticalmarkers,
labeled by A;B;C and D, respectively. We use the cross-road
labels, i.e.,A;B;C andD, to represent the events of congestions
at the corresponding crossroads. As the data has a fixed
update rhythm, we index every time stamp of the event
sequence within fifteen minutes. In this way, we generate
three event sequences for the selected areas.

We mined frequent fixed-gap episodes from these three
sequences and obtained fixed-gap episodes on each
sequence (shown as congestions). We observed that for each
crossroad pair, the most frequent fixed-gap episode has
clearly superiority in frequency compared with its variant
that consists of the same events but different time spans. To
demonstrate that observation, we collected themost frequent

Fig. 4. The result for running Algorithm 6 to PER-trie T hD;Ai when i ¼ 5.
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fixed-gap episode for each crossroad pair and compute the
difference ratio with its highest-ranking variant as follows:

Ratioðb;b0Þ ¼ spðbÞ � spðb0Þ
spðbÞ ; (3)

where b is the most frequent fixed-gap episode for a given
crossroad pair, and b0 is its corresponding variant. We can see
that the results on Tables 1, 2, and 3. Further, for the relation-
ship between more crossroads, e.g., A;B and D in Case 1, the
fixed-gap episode ðhA;B;Di; h1; 1iÞ ranks the first. Its support
outperforms that of followed variations ðhA;B;Di; h1; 2iÞ and
ðhA;B;Di; h2; 1iÞ by 61.5 and 76.9 percent, respectively. Simi-
lar patterns were also found from the sequences for Cases 2
and 3. These observations are consistent with the assumed
chain reaction mechanism in Section 1. The reason is that we
can find a specific m as the frequently time span between any
two consecutive events in a fixed-gap episode.

Next we performed a predictive analysis on such data. In
particular, we splitted the sequence into two parts by date
as training set and test set, respectively. Then we validated
whether the most frequent fixed-gap episodes for each
crossroad pair in the training set were still ranked highest
on the test set. The results showed that the most frequent
episodes for each crossroad pair in the training set still
ranked first in the test set.

Based on such observations, we believe frequent fixed-
gap episode mining identifies the patterns at a finer granu-
larity. With fixed-gap episodes, we can design management
strategies. For example, on Case 1 temporally close the
entrance to the main road at B fifteen minutes later once
we monitor a jam at A, and still keep the entrance at D open
for a moment since the traffic status at D is influenced
by that of A within about thirty minutes. However, under
traditional methods, we will not differentiate hA;Bi and
hA;Di as both of them indicate they will happen frequently
within a time interval of thirty minutes.

8 EXPERIMENTS

In this section, we evaluate both effectiveness and efficiency
of the proposed algorithms. We first show the effectiveness
of PERs in real data from China stock market. Then we eval-
uate the efficiency of the proposed algorithms on three
widely used benchmark datasets. Experiments on efficiency
are performed on a CentOS 6.4 server with 1.87 GHz Intel
Xeon E7-4807 CPU and 128 GB memory. All of the algo-
rithms are implemented in Java.

8.1 Effectiveness of PER
We first evaluate the effectiveness of PER on real sequences
from China stock market. In particular, we aim at capturing
indications of correlations among industry sectors and
use them to help the design of time trading strategies.
Compared with traditional episode mining methods, the
proposed precise-positioning episode rule mining frame-
work could better fulfill the task. In this investigation, we
mine valid PERs from the event sequence built from price
series of industry sectors in stock market and evaluate their
predictive ability in future.

8.1.1 Data Preparation and Experimental Settings

There are all together 29 industry sectors in China stock mar-
ket based on a predefined taxonomy of stocks by CITIC
Securities (a finance corporation in China). A sector usually
containsmultiple stocks.We treat each sector as a pseudo stock.
And we take the average daily price change ratio of all the
stock in a sector as the daily change ratio of suchpseudo stock.
Finally there are 29 time series. Then, we discretize the values
of change ratio into two categories and generate two kinds of
events: UP (if the price increases) andDN (otherwise) for each
sector. To simplify the problem,we only consider the relation-
ship between two custom sectors. Thus, we can merge the
events from any two different sectors to form an event
sequence. We construct 150 groups of related sector pairs to
form an experimental dataset, and we perform investigations
on such a dataset.

The data we used involves 1,129 trading days ranging
from Jan. 1, 2010 to Aug. 29, 2014. We separate it into two
parts to generate the training and test sets as follows: The
data from the first 4 years (including 967 trading days) are

Fig. 5. The road information in traffic condition dataset.

TABLE 1
Frequency Difference Ratio on Case 1

No. b b0 Ratioðb; b0Þ

1 ðhA, Bi, h1iÞ ðhA, Bi, h2iÞ 55:6%
2 ðhA, Ci, h1iÞ ðhA, Ci, h2iÞ 47:5%
3 ðhA, Di, h2iÞ ðhA, Di, h3iÞ 42:4%
4 ðhB, Ci, h1iÞ ðhB, Ci, h3iÞ 27:2%
5 ðhB, Di, h1iÞ ðhB, Di, h2iÞ 12:5%
6 ðhC, Di, h1iÞ ðhC, Di, h2iÞ 50%

TABLE 2
Frequency Difference Ratio on Case 2

No. b b0 Ratioðb; b0Þ

1 ðhB, Ai, h1iÞ ðhB, Ai, h2iÞ 36:8%
2 ðhC, Ai, h2iÞ ðhC, Ai, h3iÞ 47:3%
2 ðhD, Ai, h2iÞ ðhD, Ai, h3iÞ 38%
4 ðhC, Bi, h1iÞ ðhC, Bi, h2iÞ 30%
5 ðhD, Bi, h2iÞ ðhD, Bi, h3iÞ 55:1%
6 ðhD, Ci, h1iÞ ðhD, Ci, h2iÞ 42:9%

TABLE 3
Frequency Difference Ratio on Case 3

No. b b0 Ratioðb; b0Þ

1 ðhA, Bi, h1iÞ ðhA, Bi, h2iÞ 44:1%
2 ðhA, Ci, h1iÞ ðhA, Ci, h2iÞ 54:2%
3 ðhA, Di, h1iÞ ðhA, Di, h2iÞ 36%
4 ðhB, Ci, h1iÞ ðhB, Ci, h2iÞ 58:6%
5 ðhB, Di, h1iÞ ðhB, Di, h2iÞ 26:8%
6 ðhC, Di, h1iÞ ðhC, Di, h2iÞ 47:6%
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taken as the training set, and the rest (including 162 trading
days) are used as the test set. Valid PERs are mined from the
training set and are evaluated on the test set. We empirically
decided the parameter settings for the mining: min_sup =
145,min_conf = 0.5, d = 3 and � = 5. As it is difficult to believe
a rule telling an industry sector may go up many days
(e.g., two weeks) after viewing an antecedent happen. So we
set small values for both d and �.

8.1.2 Results

Predictive Ability of PER. We obtained multiple PERs from
every sequence under our settings. We first aim at checking
whether the PERs with high confidence on the training data
still perform well on the test data.

In more detail, we rank the rules based on their confidence
values on the training data. Then, for the top-k rules in the
training data we calculate the average precision on the test
set. Fig. 6a shows the results. First of all, we can see that both
the average and max values tend to decrease as the value of k
increases. It indicates that the rules, which perform better in
the training set, are likely to perform better in the test set.
Also, the average precision on test data exceeds 59.3 percent
when k ¼ 50. Recall that the baseline methods, which ran-
domly select one result from two choices, only have precisions
around 50 percent on these sequences. More importantly, the
max precision reaches 65.4 percent when k ¼ 50. It indicates
that some predictive rules existing in pairs of sectors perform
well on the test set. These rules have the potential business
impact when considered by time trading strategies over the
securities of the corresponding sectors.

In addition, we generate 150 random datasets with the
same scale and perform the samemining and evaluation pro-
cess on these sequences. We found that the predictive ability
of PERs in random datasets are stable with the mean of 50
percent. It is another encouraging observation demonstrat-
ing that there might be indeed some underlying regularities
in real price sequences of stocks in Chinese market.

PER versus Traditional Episode Rules.We next compare PER
with traditional episode rules to show the predictive power
of the precision timestamp. Specifically, we degrade PER
with single event in consequent to traditional episode rule
(denoted as TDR hereafter) and demonstrate their differen-
ces in predictive ability. In order to show the difference
between them more clearly, we collected the rules with
Dt ¼ 5 from top 50 rules on the training sets to construct an
experimental set. The reason we adopt the rules whose
consequent has only one event is because we can easily
make them become TDR by directly concealing their Dt
between the antecedent and the consequent. Otherwise, the
transformation process will be complicated and unfair. In
such comparison, we still evaluate the precision of the rules
on the test set as the previous study does. We adopt the fol-
lowing strategy for evaluation: Given a TDR, we trade

immediately according to the event saying in its consequent
after its antecedent appears. In other words, we buy the corre-
sponding pseudo stock if the consequent predicts “UP” and
short it otherwise. Then we hold the position until the
expected event happens or the maximum window size for
consequent occurrence is reached. We can get the precision of
a rule by computing the return in the process of the holdings.

For making a fair comparison between PER and TDR, we
will close out when the float loss exceeds a threshold during
the holdings by a TDR. Here we vary the stop-loss threshold
in a small range, i.e., 0 to 0.3 percent, as the daily price
change ratio of each industry sector is small. Recall that
such ratio is computed by the mean of all stocks’ daily price
change ratios in the same industry sector, and 0.3 percent is
ranking at around 33th percentile among all ranked daily
price change ratios of industry sectors. Fig. 6b illustrates the
results of average winning rate of PER at top k under differ-
ent stop-loss thresholds. The winning rate of PER is calcu-
lated by the times that PER outperforms TDR divided by
the total number of rules in the experimental set. It is clear
that PER has a better average precision when this measure
is higher than 50 percent. From the figure, we can see that
PER outperforms TDR under all the settings, though the
winning rate decreases as k increases. We conclude from
this comparison that with the constraints by PER, precisions
of rule could make valid contribution to real applications.

8.2 Efficiency Evaluation
Next, we evaluate the efficiency of our algorithms on three
real data sets, namely, Retail, Kosarak and MSNBC.3

Among them Retail consists of sales basket data from stores,
while Kosarak and MSNBC are datasets of click-stream data
from web sites. We followed the pre-processing method in
[4] to make the data fit our problem. The detailed statistic
information are shown in Table 4.

8.2.1 Experiment Setup

Though there is no prior work of PER mining, we can
extend existing frequent episode mining algorithms to
generate PER candidates with post-processing and filter the
invalid ones by minimum confidence thresholds. Following
this idea, we compared the proposed MIP-ENUM, MIP-
TRIE(DFS) and MIP-TRIE(PRU) with the state-of-the-art
FEM algorithms including the DFS [24] and the MINEPI
+ [7]. We also explored the UP-Span [4] and the MESELO [9]
algorithm, but it ran out of memory under given settings,
and hence we did not include it in the results. There are
4 parameters to be tuned in the problem of MIPER. Hence,
we perform four groups of experiments to evaluate the
effect of each parameter on the performance. In each experi-
ment, we vary one parameter while keeping the other three

Fig. 6. The effectiveness of PER.

TABLE 4
Statistical Information on Data Sets

Data set #Time stamp #Events Avg. #Events per
Time stamp

Retail 88,162 16,470 10.3
Kosarak 990,002 41,270 8.1
MSNBC 31,790 17 5.3

3. The datasets are available at http://www.philippe-fournier-
viger.com/spmf/index.php?link=datasets.php
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parameters fixed. The detailed settings on the fixed parame-
ter values for different datasets are shown as Table 5.
For example, for dataset Retail, when the minimum support
threshold (min sup) is fixed in the experiments, its value is
set to 6,000. The reason we use different minimum support
thresholds for different data sets is that these sequences are
different in terms of length and event dense.

8.2.2 Results on Time Efficiency

Fig. 7 show the results on time efficiency with varying
parameters for different datasets. The execution times
on different datasets with different parameter settings are
shown in each sub-figure. From these results, we have the
following common observations:

� The extended baselines fail to report results on each
setting of parameters because they ran out of mem-
ory. The reason is that we have to use much lower
support threshold, i.e., min sup	min conf , to mine
frequent episodes and need to record every detailed
occurrence timestamp of each frequent episode to
help generating PER candidates. As a rule of thumb,
more lenient parameter settings will result in longer
running times and this extra information would con-
sume a lot of space. This observation further demon-
strates the effectiveness of our MIP methods.

� The DFS and MINEPI+ methods have the similar
performance. It indicates that post-processing opera-
tions for obtaining valid PERs dominate the whole
mining progress of these baselines. Additionally,MIP-
ENUM can clearly outperform DFS and MINEPI+
though it is a straightforward method to solve the
MIPER problem.

� MIP-TRIE algorithms are significantly more efficient
than MIP-ENUM. Usually, the performance gain can
be as large as two orders of magnitude. For instance,
Fig. 7a shows that MIP-TRIE(PRU) achieves more
than 400 times performance gain than MIP-ENUM
when min sup ¼ 500 on Retail dataset. To under-
stand the difference between MIP-ENUM and MIP-

TRIE in a detailed manner, we look at the following
statistics: number of frequent minimal-occurrence
episodes (1,034), the number of fixed-gap episodes
(31,540), the number of PER candidates (53,080,718)
and the number of valid PER (12,746) mined over the
Retail in such setting. For other settings by varying
min sup and �, we exhibit the corresponding statistics
over the Retail dataset as Tables 6 and 7. Obviously,
we can observe MIP-ENUM generates a much larger
number of PER candidates from the two tables. As we
only need tomine the valid PERs after the occurrences
of the frequent minimal-occurrence episodes in MIP-
TRIE algorithms, the search space is greatly reduced,
which results in impressive time saving.

� MIP-TRIE(PRU) is more efficient than MIP-TRIE
(DFS). The reason is that some repetitive sequence
scans are reduced by re-using the intermediate results
within the established PER-trie. Besides, we can also
enhance the pruning power with the help of down-
ward-closure property.

Fig. 7a shows the execution time of the five methods with
different settings ofmin sup. We observe that the superiority
of MIP-TRIE algorithms becomes more obvious as min sup
decreases. It outperforms the MIP-ENUM by more than two
orders of magnitude when min sup is small. On the other
hand, MIP-TRIE(PRU) has a mild advantage compared with
MIP-TRIE(DFS) algorithm. Thus, we can conclude that the
MIP-ENUM is more sensitive to min sup. The reason is that

TABLE 5
Parameter Settings of Efficiency Validations

over Different Datasets

Data set min sup d � min conf

Retail 6,000 3 5 0.35
Kosarak 140,000 3 5 0.35
MSNBC 10,000 3 5 0.35

Fig. 7. Time efficiency comparisons.

TABLE 6
Output Statistics on Retail Dataset, Varyingmin sup

min sup #frequent
episode

#fix-gaped
episode

#PER
candidate

#valid
PER

4,500 94 2,242 356,918 1,117
3,500 119 3,286 662,830 1,429
2,500 157 4,814 1,335,358 1,849
1,500 325 9,401 5,447,247 3,926
500 1; 034 31,540 53,080,718 12,746

TABLE 7
Output Statistics on Retail Dataset, Varying �

� #frequent
episode

#fix-gaped
episode

#PER
candidate

#valid
PER

4 30 332 15,600 256
6 30 1,604 86,850 398
8 30 5,463 342,510 536
10 30 15,210 1,078,260 666
12 30 36,238 2,880,990 793
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whenmin sup	min conf decreases, amuch large number of
frequent fixed-gap episodes would be considered to form
PER candidates, which results in a longer execution time. For
the conventional methods, namely DFS and MINEPI+, they
cannot finish on some computation intensive cases such as
every setting on the MSNBC dataset and min sup ¼ 20;000
on the Kosarak dataset. We check the data statistics of the
MSNBC dataset and find it is much denser than the other two
datasets, and it requires much more memory for DFS and
MINEPI+.

Fig. 7b shows the execution time of the compared meth-
ods with different settings of �. In such comparison, MIP-
ENUM also ran out of memory on the Kosarak and MSNBC
datasets when � was set to 12. We thus only report the
results of two methods in this setting. From the figure, the
performance of MIP-ENUM degrades seriously as �
increases. At the same time, MIP-TRIE methods are less sen-
sitive to �. Here, � controls the scale of the consequent of
PERs, namely fixed-gap episodes. Since MIP-TRIE methods
onlymine the valid ruleswithin some limited area, the impact
of � on MIP-TRIE methods becomes less significant. On the
other hand, the gap between MIP-TRIE(PRU) and MIP-TRIE
(DFS) becomes evident as the parameter increases. The reason
is that a bigger � might derive a deeper PER-trie. In this case,
the effects of pruning strategies applied in MIP-TRIE(PRU)
become more obvious. For the conventional methods, we can
observeDFS andMINEPI+ are very sensitive to the parameter
of �. They can only report the running time on very few
settings, and their running time is significantly greater than
the proposedmethods. For example, MIP-TRIE(PRU) outper-
forms DFS and MINEPI+ by 1,092 and 1,184 times, respec-
tively, on the Retail dataset when � is set to 10.

Figs. 7c and 7d show the execution time of the three meth-
ods with different settings of d and min conf , respectively.
We can observe similar trends with the previous evaluations.
Besides, since d has closer correlation with mining antece-
dents, andmin conf is a filter for valid PERs, there is no doubt
that they have impacts on the MIPER problem but not the
essential factors dominating the differences between theMIP-
ENUM and the MIP-TRIE algorithms. However, both d and
min conf still have clear effects on DFS and MINEPI+ since
these two parameters contribute to determine the maximum
window size and the minimum frequency threshold, respec-
tively, whenmining frequent episodes.

8.2.3 Results on Memory Consumptions

Next, we investigate the memory consumption evaluations.
Here we only focus on comparing the proposed methods in
this paper. Sincemin sup and � havemore significant impacts
on the efficiency of PER mining algorithms, we evaluate
the memory consumption of the algorithms by varying
either parameter min sup or � but fix the others. Figs. 8a and
8b show the memory consumption of the algorithms on the
three datasets under different minimum support threshold
min sup and maximum window size for consequent

occurrence threshold �, respectively. Basically, we can observe
from the figures that MIP-TRIE algorithms use much less
memory than MIP-ENUM, and meanwhile they are more
stable in memory using compared with MIP-ENUM. When
� ¼ 12, MIP-ENUM even run out of memory and cannot
come upwith a result on two datasets. For the two algorithms
MIP-TRIE(PRU) and MIP-TRIE(DFS), we can observe the
former one holds moderate advantages on most of the cases.
One different case occurswhenvarying � on theMSNBCdata-
set. MIP-TRIE(DFS) uses less memorywhen � becomes larger.
The reason might be that this dataset has shorter sequence
length and less events in the sequence. But in most cases, the
results show that the best algorithm is MIP-TRIE(PRU) and
theworst one isMIP-ENUM inmemory consumption.

9 CONCLUSION AND FUTURE WORK

In this paper, we formulate the problem of mining precise-
positioning episode rules, which is helpful for real-world
applications where automatic responses are needed in a
timelymanner. This is the first attempt to mine episode rules
with precise time of the consequent events. We define the
consequent of precise-positioning episode rules as fixed-gap
episodes, in which the events occur with determined time
intervals. Next, we propose one approach based on enumer-
ation as well as two approaches based on a compact trie
structure to enhance the pruning power and reduce execu-
tion time of the mining process. We demonstrated the effec-
tiveness of our methods in two case studies on finance and
transportation.We also conducted an extensive set of experi-
ments to evaluate the efficiency of the proposedmethods.

There are also several possible interesting future work of
this study. First, investigating the generating mechanism of
fixed-gap and studying its correlation between parameter
settings. We depicted the possible mechanism for generat-
ing fixed-gap episodes and knew s in Eq. (1) has impact on
the number of frequent fixed-gap episodes in sequences. To
study the correlation between such mechanism, especially
that between s and frequency parameter selection might be
an interesting future work since an estimation of s may give
reasonable suggestions to the setting of frequency thresh-
olds. Second, we could apply MIPER for more complicated
type of data, e.g., road network and sequence of stocks with
more simultaneous sectors.
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